学术动态

美国国家工程院院士黄永刚教授“鼎新讲座”- Mechanics-guided Deterministic 3D Assembly(力学引导的三维组装)

发布时间:2018-06-19

报告题目:Mechanics-guided Deterministic 3D Assembly(力学引导的三维组装)

报 告 人:黄永刚  

          美国国家工程院院士

          欧洲科学与艺术院院士

          中国科学院外籍院士

          欧洲科学院外籍院士

          美国西北大学冠名讲席教授

时    间:6月21日(星期四)上午10:30

地    点:南岭校区仿生楼一楼报告厅

主办单位:科学技术协会

承办单位:工程仿生教育部重点实验室

协办单位:宣传部、生物与农业工程学院、机械科学与工程学院、国际仿生工程学会、东区综合办公室等


报告人简介:

黄永刚,固体力学家。1984年获北京大学学士,1990年获哈佛大学博士。现任美国西北大学冠名讲席教授。2010年当选欧洲科学与艺术院院士,2017年当选美国国家工程院院士、欧洲科学院外籍院士和中国科学院外籍院士。他是美国固体力学领域75岁以下科学院或工程院院士中文章引用率最高的学者;是二十年来(1998-2018)世界固体力学领域文章引用率最高的学者;是迄今为止世界固体力学领域文章引用率最高的华人学者。他研究材料和电子器件的力学行为,已在《科学》发表9篇文章和《自然》2篇。他为我国力学学科和柔性电子学科的发展做出了重要贡献。为国内培养和输送了一批固体力学和柔性电子科研骨干,在美国培养的18名中国博士生和博士后已回国,含1名973首席、3名杰青、6名优青、2名青千、2名求是杰出青年、1名《麻省理工技术评论》青年发明家(TR35)、1名国际工程科学协会青年科学家奖、美国机械工程师协会Sia Nemat-Nasser奖和Melville奖各1名、和1名Eshelby力学青年教师奖。另外,与清华、浙大等高校联合培养10名博士后和30名博士(3人获全国百优博士论文)。

 

报告提要:

微纳三维复杂结构在细胞骨架、神经网络等生物系统中广为存在,提供着生命体最基本的功能,而现有的微尺度三维结构组装/制备方法在可用材料和可实现几何结构上有很大局限。本报告介绍一种微尺度三维结构组装方法,将剪纸和折纸概念与可控力学屈曲相结合,实现了从二维微纳米薄膜到三维细微观结构的高精度、批量、连续可逆的组装。

Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life.  Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly.  We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon.  The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling.  Designs inspired by kirigami/origamiand/or releasable multilayers enable the formation of mesostructures with a broad variety of 3D geometries, either with hollow or dense distributions.  Demonstrations include experimental and theoretical studies of more than 100 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cars, houses, cuboid cages, starbursts, flowers, scaffolds, each with single- and/or multiple-level configurations.  Morphable 3D mesostructures whose geometries can be elastically altered can be further achieved via nonlinear mechanical buckling, by deforming the elastomer platforms in different time sequences.  We further introduce concepts in physical transfer, patterned photopolymerization and non-linear plasticity to enable integration of 3D mesostructures onto nearly any class of substrate, with additional capabilities in access to fully or partially free-standing forms, all via mechanisms quantitatively described by theoretical modeling. Compatibility with the well-established technologies available in semiconductor industries suggests a broad range of application opportunities.  Illustrations of these ideas include their use in building 3D structures as radio frequency devices for adaptive electromagnetic properties, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, as ultra-stretchable interconnects for soft electronics and as catalyst supports for propulsive systems in 3D micro-swimmers with geometrically controlled dynamics.